Fourier - Gauss transforms of the Al-Salam - Chihara polynomials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 L655
(http://iopscience.iop.org/0305-4470/30/19/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 02/06/2010 at 05:53

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Fourier-Gauss transforms of the Al-Salam-Chihara polynomials

M K Atakishiyeva \dagger and N M Atakishiyev $\ddagger \S$
\dagger Facultad de Ciencias, UAEM, Apartado Postal 396-3, CP 62250 Cuernavaca, Morelos, Mexico \ddagger Instituto de Matematicas, UNAM, Apartado Postal 273-3, CP 62210 Cuernavaca, Morelos, Mexico

Received 3 July 1997

Abstract

We discuss classical Fourier-Gauss transforms of a three-parameter family of the continuous Al-Salam-Chihara polynomials $p_{n}(x ; a, b \mid q)$. It is shown that they are related to both the continuous big q-Hermite $p_{n}(x ; a, 0 \mid q)$ and the q-Hermite $p_{n}(x ; 0,0 \mid q)$ polynomials.

In this letter we examine the Fourier-Gauss transformation properties of a family of the three-parameter Al-Salam-Chihara polynomials [1]

$$
p_{n}(x ; a, b \mid q):=a^{-n}(a b ; q)_{n 3} \phi_{2}\left[\begin{array}{c}
q^{-n}, a \mathrm{e}^{\mathrm{i} \theta}, a \mathrm{e}^{-\mathrm{i} \theta} \tag{1}\\
a b, 0
\end{array} ; q, q\right]
$$

in the variable $x=\cos \theta$. Here $(a ; q)_{0}=1$ and $(a ; q)_{n}=\prod_{j=0}^{n-1}\left(1-a q^{j}\right), n=1,2,3, \ldots$, is the q-shifted factorial with the convention $\left(a_{1}, \ldots, a_{k} ; q\right)_{n}=\prod_{j=1}^{k}\left(a_{j} ; q\right)_{n}$ and ${ }_{3} \phi_{2}$ is the basic hypergeometric series. Throughout this letter we will employ the standard notations of q-special functions [2,3]. The Al-Salam-Chihara polynomials (1) are a particular case of the more general family of Askey-Wilson polynomials $p_{n}(x ; a, b, c, d \mid q)$ [4] with two vanishing parameters $c=d=0$. They are symmetric with respect to the parameters a, b and

$$
\begin{equation*}
p_{n}(-x ; a, b \mid q)=(-1)^{n} p_{n}(x ;-a,-b \mid q) . \tag{2}
\end{equation*}
$$

The Al-Salam-Chihara polynomials (1) with vanishing parameters a and b correspond to the continuous q-Hermite polynomials

$$
\begin{equation*}
H_{n}(x \mid q):=p_{n}(x ; 0,0 \mid q) \tag{3}
\end{equation*}
$$

of Rogers [5, 6]. At the next level of the Al-Salam-Chihara family one of the two parameters a and b is vanishing. This special case defines the continuous big q-Hermite polynomials [3, 7, 8]

$$
\begin{equation*}
H_{n}(x ; a \mid q):=p_{n}(x ; a, 0 \mid q) \tag{4}
\end{equation*}
$$

The Fourier-Gauss transformation properties of the continuous q-Hermite polynomials (3) and big q-Hermite polynomials (4) have been studied in [9] and [10], respectively. Since
§ On leave from: Institute of Physics, Azerbaijan Academy of Sciences, H.Javid pros. 33, Baku 370143, Azerbaijan. E-mail address: natig@ matcuer.unam.mx
the Al-Salam-Chihara polynomials can be expressed in terms of either the q-Hermite, or the big q-Hermite polynomials, their Fourier-Gauss transformation properties are bound to be connected as well. The purpose of the present letter is to make use of this circumstance in order to obtain classical Fourier-Gauss transforms of the Al-Salam-Chihara polynomials (1).

We begin with the relation

$$
p_{n}(x ; a, b \mid q)=\sum_{k=0}^{n} q^{k(k-1) / 2}\left[\begin{array}{l}
n \tag{5}\\
k
\end{array}\right]_{q}(-a)^{k} H_{n-k}(x ; b \mid q)
$$

between the Al-Salam-Chihara (1) and big q-Hermite (4) polynomials. The coefficients of $H_{n-k}(x ; b \mid q)$ in expansion (5) are a particular case of the general formula for the connection coefficients of the Askey-Wilson polynomials, derived in [4] by using the orthogonality relation for them. But one can find these coefficients directly from definitions (1) and (4). Indeed, from (4) and (1) it follows that
$H_{n}(x ; a \mid q):=a^{-n}{ }_{3} \phi_{2}\left[\begin{array}{c}q^{-n}, a \mathrm{e}^{\mathrm{i} \theta}, a^{-\mathrm{i} \theta} \\ 0,0\end{array} ; q, q\right]=a^{-n} \sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k}}{(q ; q)_{k}} q^{k}\left(a \mathrm{e}^{\mathrm{i} \theta}, a \mathrm{e}^{-\mathrm{i} \theta} ; q\right)_{k}$.
Since

$$
\frac{\left(q^{-n} ; q\right)_{k}}{(q ; q)_{k}}=(-1)^{k} q^{k(k-1) / 2-n k}\left[\begin{array}{l}
n \tag{7}\\
k
\end{array}\right]_{q}
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is the q-binomial coefficient

$$
\left[\begin{array}{l}
n \tag{8}\\
k
\end{array}\right]_{q}:=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}=\left[\begin{array}{c}
n \\
n-k
\end{array}\right]_{q}
$$

one can represent (6) as

$$
H_{n}(x ; a \mid q)=a^{-n} \sum_{k=0}^{n}(-1)^{k} q^{k(k+1) / 2-n k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\left(a \mathrm{e}^{\mathrm{i} \theta}, a \mathrm{e}^{-\mathrm{i} \theta} ; q\right)_{k} .
$$

It is now easy to invert expansion (6^{\prime}) by the aid of the orthogonality relation [11]

$$
\sum_{k=0}^{m}(-1)^{k} q^{k(k-1) / 2}\left[\begin{array}{l}
m \tag{9}\\
k
\end{array}\right]_{q}\left[\begin{array}{c}
m-k \\
n
\end{array}\right]_{q}=\delta_{m n}
$$

for the q-binomial coefficients (8). The inverse expansion is thus of the form

$$
\left(a \mathrm{e}^{\mathrm{i} \theta}, a \mathrm{e}^{-\mathrm{i} \theta} ; q\right)_{k}=\sum_{j=0}^{k} q^{j(j-1) / 2}\left[\begin{array}{l}
k \tag{10}\\
j
\end{array}\right]_{q}(-a)^{j} H_{j}(x ; a \mid q) .
$$

Substituting (10) into the right member of (1), one obtains

$$
\begin{align*}
p_{n}(x ; a, b \mid q)= & \frac{(a b ; q)_{n}}{a^{n}} \sum_{k=0}^{n} q^{k(k+1) / 2} \frac{\left(q^{-n} ; q\right)_{k}}{(a b, q ; q)_{k}}(-a)^{k} H_{k}(x ; a \mid q) \\
& \times{ }_{2} \phi_{1}\left(q^{k-n}, 0 ; a b q^{k} ; q, q\right) \tag{11}
\end{align*}
$$

The basic hypergeometric series ${ }_{2} \phi_{1}$ in (11) represents a special case of the ChuVandermonde q-sum

$$
\begin{equation*}
{ }_{2} \phi_{1}\left(q^{-n}, b ; c ; q, q\right)=\frac{(c / b ; q)_{n}}{(c ; q)_{n}} b^{n} \tag{12}
\end{equation*}
$$

with the vanishing parameter b, so that for $k \leqslant n$ it is equal to

$$
\begin{equation*}
{ }_{2} \phi_{1}\left(q^{k-n}, 0 ; a b q^{k} ; q, q\right)=q^{n(n-1) / 2-k(k-1) / 2} \frac{(a b ; q)_{k}}{(a b ; q)_{n}}(-a b)^{n-k} . \tag{13}
\end{equation*}
$$

Reversing the order of summation with respect to k in (11) and making use of (13) establishes the required relation (5).

Observe that from (5) and the limit relation [3]

$$
\begin{equation*}
\lim _{q \rightarrow 1} \kappa^{-n} H_{n}(\kappa s ; 2 \kappa a \mid q)=H_{n}(s-a) \tag{14}
\end{equation*}
$$

where $H_{n}(s)$ are the ordinary Hermite polynomials, it follows that

$$
\begin{equation*}
\lim _{q \rightarrow 1} \kappa^{-n} p_{n}(\kappa s ; 2 \kappa a, 2 \kappa b \mid q)=H_{n}(s-a-b) \tag{15}
\end{equation*}
$$

Further, the inverse expansion with respect to (5) is

$$
H_{n}(x ; b \mid q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} a^{n-k} p_{k}(x ; a, b \mid q) .
$$

One easily checks (5^{\prime}) by employing the same orthogonality relation (9) for the q-binomial coefficients (8). When $b=0$ the expansion (5^{\prime}) reduces to that for the q-Hermite polynomials $H_{n}(x \mid q)$ in terms of the big q-Hermite polynomials $H_{n}(x ; a \mid q)$ [10].

It is essential to note that one can use (5^{\prime}) for simple derivations of various expansions for the q-exponential function

$$
\begin{equation*}
\mathcal{E}_{q}(x ; t)=e_{q^{2}}\left(q t^{2}\right) \sum_{n=0}^{\infty} \frac{q^{n^{2} / 4}}{(q ; q)_{n}} t^{n} H_{n}(x \mid q) \tag{16}
\end{equation*}
$$

on the q-quadratic lattice [12-15]. We mention here two instances of such a usage of $\left(5^{\prime}\right)$. Substitute first the expansion (5^{\prime}) with $b=0$ into the right-hand side of (16) and interchange the order of summation with respect to the indices n and k. This gives

$$
\begin{equation*}
\mathcal{E}_{q}(x ; t)=e_{q^{2}}\left(q t^{2}\right) \sum_{n=0}^{\infty} \frac{q^{n^{2} / 4}}{(q ; q)_{n}} t^{n} \varepsilon_{q}\left(a t q^{n / 2}\right) H_{n}(x ; a \mid q) \tag{17}
\end{equation*}
$$

where Jackson's q-exponential function $e_{q}(z)$ [16] and the q-exponential function on the q-linear lattice $\varepsilon_{q}(z)$ [17] are defined as

$$
\begin{equation*}
e_{q}(z):=\sum_{n=0}^{\infty} \frac{z^{n}}{(q ; q)_{n}} \quad \varepsilon_{q}(z):=\sum_{n=0}^{\infty} \frac{q^{n^{2} / 4}}{(q ; q)_{n}} z^{n} \tag{18}
\end{equation*}
$$

Recall that the q-exponential functions $e_{q}(z)$ and $\varepsilon_{q}(z)$ are interrelated by the classical Fourier-Gauss transform [18]. When $a=q^{m / 2}$ the expansion (17) in terms of the continuous big q-Hermite polynomials reduces to one algebraically derived in [7] by using symmetry techniques (the parameter b in [7] is connected with t in (17) by $b=-2 \mathrm{i} t$).

In a like manner, from (17) and (5^{\prime}) we have

$$
\begin{gather*}
\mathcal{E}_{q}(x ; t)=e_{q^{2}}\left(q t^{2}\right) \sum_{n=0}^{\infty} \frac{q^{n^{2} / 4}}{(q ; q)_{n}} t^{n} p_{n}(x ; a, b \mid q) E_{q^{2}}\left(a b t^{2} q^{n+1}\right) \\
\times \varepsilon_{q}\left(\frac{1}{2}(\sqrt{a / b}+\sqrt{b / a}) ; q^{n / 2} \sqrt{a b} t\right) \tag{19}
\end{gather*}
$$

where the q-exponential function

$$
\begin{equation*}
E_{q}(z):=\sum_{n=0}^{\infty} \frac{q^{n(n-1) / 2}}{(q ; q)_{n}}(-z)^{n} \tag{20}
\end{equation*}
$$

is the reciprocal to $e_{q}(z)$. In the passage from (17) to (19) we have employed the convolution-type relation

$$
\begin{equation*}
\mathcal{E}_{q}(\cos \theta ; t)=e_{q^{2}}\left(q t^{2}\right) \sum_{n=0}^{\infty} \frac{q^{n^{2} / 4}}{(q ; q)_{n}}\left(t \mathrm{e}^{-\mathrm{i} \theta}\right)^{n} \varepsilon_{q}\left(q^{n / 2} t \mathrm{e}^{\mathrm{i} \theta}\right) \tag{21}
\end{equation*}
$$

between the q-exponential functions on the q-quadratic and q-linear lattices $\mathcal{E}_{q}(\cos \theta ; t)$ and $\varepsilon_{q}\left(q^{n / 2} t \mathrm{e}^{\mathrm{i} \theta}\right)$, respectively. One easily derives (21) by substituting the explicit form

$$
H_{n}(\cos \theta \mid q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{22}\\
k
\end{array}\right]_{q} \mathrm{e}^{\mathrm{i}(n-2 k) \theta}
$$

of the q-Hermite polynomials $H_{n}(x \mid q)$ in the relation (16) and interchanging then the order of summation with respect to the indices n and k.

The particular case of (19) with $a=q^{\alpha / 2}$ and $b=q^{\beta / 2}$ represents a q-analogue for the Al-Salam-Chihara polynomials of the Fourier-Gegenbauer expansion of a plane wave in terms of the Jacobi polynomials [19].

We return now to the expansion (5). The classical Fourier-Gauss transform of the continuous big q-Hermite polynomials (4) is known to be of the two alternative forms [10]

$$
\begin{align*}
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / 2} H_{n}(\sin \kappa s ; a \mid q) \mathrm{d} s=\mathrm{i}^{n} q^{n^{2} / 4} \mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} q^{3 k^{2} / 4-(n+1) k / 2}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \\
& \times(\mathrm{i} a)^{k} h_{n-k}(\sinh \kappa r \mid q) \tag{23a}\\
&= \mathrm{i}^{n} q^{n^{2} / 4} \mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} q^{k(k-n)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} c_{k, n}(q)(-\mathrm{i} a)^{k} h_{n-k}(\sinh \kappa r ; a \mid q) \tag{23b}
\end{align*}
$$

where the constant $c_{k, n}(q)$ is equal to

$$
\begin{equation*}
c_{k, n}(q)=\sum_{j=0}^{k} \frac{\left(q^{-k} ; q\right)_{j}}{(q ; q)_{j}} q^{(n+j / 2) j / 2} \tag{23c}
\end{equation*}
$$

Here $h_{n}(x \mid q)=\mathrm{i}^{-n} H_{n}\left(\mathrm{i} x \mid q^{-1}\right)$ and $h_{n}(x ; a \mid q)=\mathrm{i}^{-n} H_{n}\left(\mathrm{i} x ; a \mid q^{-1}\right)$ are the continuous $q^{-1}-$ Hermite [6] and big q^{-1}-Hermite [10,20] polynomials, respectively. They are interrelated by [10]
$h_{n}(x ; a \mid q):=\mathrm{i}^{-n} H_{n}\left(\mathrm{i} x ; a \mid q^{-1}\right)=q^{-n(n-1) / 2} \sum_{k=0}^{n} q^{k(k-1) / 2}\left[\begin{array}{l}n \\ k\end{array}\right]_{q}(\mathrm{i} a)^{n-k} h_{k}(x \mid q)$
$h_{m}(x \mid q)=\sum_{n=0}^{m} q^{n(n-m)}\left[\begin{array}{l}m \\ n\end{array}\right]_{q}(-\mathrm{i} a)^{m-n} h_{n}(x ; a \mid q)$.
Hence it remains only to multiply both sides of expansion (5) by the factor $(2 \pi)^{-1 / 2} \exp \left(\right.$ is $\left.r-s^{2} / 2\right)$ and integrate them over the variable s within infinite limits by using (23a), or (23b). This gives the following classical Fourier-Gauss transforms for the Al-Salam-Chihara polynomials

$$
\begin{align*}
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / 2} p_{n}(\sin \kappa s ; a, b \mid q) \mathrm{d} s=\mathrm{i}^{n} q^{n^{2} / 4} \mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} q^{3 k^{2} / 4-(n+1) k / 2}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \\
& \times(\mathrm{i} a)^{k} s_{k}(b / a ; q) h_{n-k}(\sinh \kappa r \mid q) \tag{25a}\\
&= \mathrm{i}^{n} q^{n^{2} / 4} \mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} q^{k(k-n)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}(-\mathrm{i} a)^{k} A_{k, n}(b / a ; q) h_{n-k}(\sinh \kappa r ; a \mid q) . \tag{25b}
\end{align*}
$$

Here

$$
s_{n}(z ; q)=\sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k}}{(q ; q)_{k}} q^{k(k+1) / 2}(-z)^{k}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{26}\\
k
\end{array}\right]_{q} q^{k(k-n)} z^{k}
$$

are the Stieltjes-Wigert polynomials [2,21] and the constant $A_{k, n}(b / a ; q)$ is given by

$$
A_{k, n}(a ; q)=\sum_{j=0}^{k}(-1)^{j} q^{3 j^{2} / 4-k j+(n-1) j / 2}\left[\begin{array}{l}
k \tag{27}\\
j
\end{array}\right]_{q} s_{j}(a ; q)
$$

It is plain that when $b=0$ the Fourier-Gauss transforms (25a) and (25b) reduce to (23a) and (23b), respectively.

One more form of the Fourier-Gauss integral (25) follows from (5'). Indeed, after transforming the base q into q^{-1}, expansion (5^{\prime}) becomes

$$
h_{n}(x ; b \mid q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{28}\\
k
\end{array}\right]_{q} q^{k(k-n)}(-\mathrm{i} a)^{n-k} \tilde{p}_{k}(x ; a, b \mid q)
$$

where $\tilde{p}_{n}(x ; a, b \mid q):=\mathrm{i}^{-n} p_{n}\left(i x ; a, b \mid q^{-1}\right)$ are the q^{-1}-polynomials of Al-Salam and Chihara [20]. Now substituting (28) into the right member of (25b) results in

$$
\begin{align*}
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / 2} p_{n}(\sin \kappa s ; a, b \mid q) \mathrm{d} s=\mathrm{i}^{n} q^{n^{2} / 4} \mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} q^{k(k-n)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} B_{k, n}(a, b ; q) \\
& \quad \times \tilde{p}_{n-k}(\sinh \kappa r ; a, b \mid q) \tag{25c}
\end{align*}
$$

where the constant
$B_{k, n}(a, b ; q)=(-\mathrm{i} a)^{k} \sum_{j=0}^{k} q^{3 j^{2} / 4-k j+(n-1) j / 2}\left[\begin{array}{c}k \\ j\end{array}\right]_{q}(-b / a)^{j} s_{j}(a / b ; q) s_{k-j}(b / a ; q)$
is symmetric with respect to the parameters a and b because of the simple property $s_{n}\left(z^{-1} ; q\right)=z^{n} s_{n}(z ; q)$, enjoyed by the Stieltjes-Wigert polynomials (26).

The Fourier-Gauss integrals (25a)-(25c) thus transform the continuous Al-SalamChihara polynomials (1) into linear combinations of:
(a) the continuous q^{-1}-Hermite polynomials $h_{n}(x \mid q)$, which are a special case of the same family (1), but with vanishing parameters a and b;
(b) the continuous big q^{-1}-Hermite polynomials $h_{n}(x ; a \mid q)$, which correspond to the next level of (1) with one vanishing parameter b;
(c) the continuous q^{-1}-polynomials of Al-Salam and Chihara from the same level (that is, when both parameters a and b are non-vanishing).

In a manner similar to the derivation of (25), from the inverse expansion to (28) and Fourier-Gauss transforms (23) one obtains

$$
\begin{align*}
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{i} s r-s^{2} / 2} \tilde{p}_{n}(\sinh \kappa s ; a, b \mid q) \mathrm{d} s=\mathrm{i}^{-n} q^{-n^{2} / 4} \mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} q^{k^{2} / 4+(1-n) k / 2}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \\
& \times(-a)^{k} H_{k}(b / a ; q) H_{n-k}(\sin \kappa r \mid q) \tag{30a}\\
&= \mathrm{i}^{-n} q^{-n^{2} / 4} \mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} a^{k} A_{k, n}\left(b / a ; q^{-1}\right) H_{n-k}(\sin \kappa r ; a \mid q) \tag{30b}\\
&= q^{-n^{2} / 4} \mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \mathrm{i}^{k-n} B_{k, n}\left(a, b ; q^{-1}\right) p_{n-k}(\sin \kappa r ; a, b \mid q) \tag{30c}
\end{align*}
$$

Here

$$
H_{n}(z ; q):={ }_{2} \phi_{0}\left(q^{-n}, 0 ; q, z q^{n}\right)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{31}\\
k
\end{array}\right]_{q} z^{k}=s_{n}\left(z ; q^{-1}\right)
$$

are the Rogers-Szegö polynomials [22-25], and
$A_{k, n}\left(a ; q^{-1}\right)=\sum_{j=0}^{k}(-1)^{j} q^{j^{2} / 4+(1-n) j / 2}\left[\begin{array}{l}k \\ j\end{array}\right]_{q} H_{j}(a ; q)$
$B_{k, n}\left(a, b ; q^{-1}\right)=(-\mathrm{i} a)^{k} \sum_{j=0}^{k} q^{j^{2} / 4+(1-n) j / 2}\left[\begin{array}{l}k \\ j\end{array}\right]_{q}(-b / a)^{j} H_{j}(a / b ; q) H_{k-j}(b / a ; q)$.
Observe that Fourier-Gauss integrals (25a)-(25c) and (30a)-(30c) are interrelated by a replacement of the base $q \rightarrow q^{-1}$ (i.e., $\kappa \rightarrow \mathrm{i} \kappa$).

We note in closing that once the Fourier-Gauss transforms (25) and (30) between the continuous Al-Salam-Chihara polynomials $p_{n}(x ; a, b \mid q)$ with different values of the parameter q are established, it means that we already understand the corresponding transformation properties of the Askey-Wilson family $p_{n}(x ; a, b, c, d \mid q)$ up to its second level (that is, with two vanishing parameters $c=d=0$). Now it seems quite plausible that our analysis of the Al-Salam-Chihara polynomials may be extended to the whole AskeyWilson hierarchy (i.e., when all four parameters a, b, c, d have non-zero values). Work on clarifying this possibility is in progress.

Discussions with B Berndt, F Leyvraz and K B Wolf are gratefully acknowledged. This work is partially supported by the UNAM-DGAPA project IN106595.

References

[1] Al-Salam W A and Chihara T S 1976 Convolution of orthogonal polynomilas SIAM J. Math. Anal. 7 16-28
[2] Gasper G and Rahman M 1990 Basic Hypergeometric Series (Cambridge: Cambridge University Press)
[3] Koekoek R and Swarttouw R F 1994 The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report 94-05 (Delft University of Technology)
[4] Askey R and Wilson J A 1985 Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials Mem. Amer. Math. Soc. 54 1-55
[5] Askey R and Ismail M E H 1983 A generalization of ultraspherical polynomials Studies in Pure Mathematics ed P Erdós (Boston, MA: Birkhäuser) pp 55-78
[6] Askey R 1989 Continuous q-Hermite polynomials when $q>1$ IMA Volumes in Mathematics and its Applications (q-series and Partitions) ed D Stanton (New York: Springer) pp 151-8
[7] Floreanini R, LeTourneux J and Vinet L 1995 An algebraic interpretaiton of the continuous big q-Hermite polynomials J. Math. Phys. 36 5091-7
[8] Floreanini R, LeTourneux J and Vinet L 1995 More on the q-oscillator algebra and q-orthogonal polynomials J. Phys. A: Math. Gen. 28 L287-93
[9] Atakishiyev N M and Nagiyev Sh M 1994 On the wave functions of a covariant linear oscillator Theor. Math. Phys. 98 162-6
[10] Atakishiyeva M K and Atakishiyev N M 1997 Fourier-Gauss transforms of the continuous big q-Hermite polynomials J. Phys. A: Math. Gen. 30 559-65
[11] Feinsilver P 1989 Elements of q-harmonic analysis J. Math. Anal. Appl. 141 509-26
[12] Ismail M E H and Zhang R 1994 Diagonalization of certain integral operators Adv. Math. 109 1-33
[13] Atakishiyev N M and Feinsilver P 1996 On the coherent states for the q-Hermite polynomials and related Fourier transformation J. Phys. A: Math. Gen. 29 1659-64
[14] Suslov S K 'Addition' theorems for some q-exponential and q-trigonometric functions Method. Appl. Anal. to appear
[15] Atakishiyev N M 1996 On the Fourier-Gauss transforms of the some q-exponential and q-trigonometric functions J. Phys. A: Math. Gen. 29 7177-81
[16] Jackson F H 1904 A basic-sine and cosine with symbolical solutions of certain differential equations Proc. Edin. Math. Soc. 22 28-38
[17] Exton H 1983 q-Hypergeometric Functions and Applications (Chichester: Ellis Horwood)
[18] Atakishiyev N M 1996 On a one-parameter family of q-exponential functions J. Phys. A: Math. Gen. 29 L223-7
[19] Floreanini R, LeTourneux J and Vinet L 1997 Symmetry techniques for the Al-Salam-Chihara polynomials J. Phys. A: Math. Gen. 30 3107-14
[20] Atakishiyev N M 1995 Orthogonality of Askey-Wilson polynomials with respect to a measure of Ramanujan type Theor. Math. Phys. 102 23-8
Atakishiyev N M 1995 Ramanujan-type continuous measures for classical q-polynomials Theor. Math. Phys. 105 1500-8
[21] Atakishiyev N M 1996 Ramanujan-type continuous measures for biorthogonal q-rational functions J. Phys. A: Math. Gen. 29 329-38
[22] Szegö G 1926 Ein Beitrag zur Theorie der Thetafunktionen Sitz. Preuss. Akad. Wiss., Phys.-Math. Klasse 19 249-52
Szegö G 1982 Collected Papers vol 1, ed R Askey (Boston, MA: Birkhaüser) 795-805 reprinted
[23] Al-Salam W A and Carlitz L 1957 A q-analogue of a formula of Toscano Boll. Unione Math. Ital. 12 414-7
[24] Carlitz L 1958 Note on orthogonal polynomials related to theta functions Publicationes Mathematicae (Debrecen) 5 222-8
[25] Atakishiyev N M and Nagiyev Sh M 1994 On the Rogers-Szegö polynomials J. Phys. A: Math. Gen. 27 L611-15

